
Prediction and Behaviors for Driver Assistance and Socially 

Cooperative Autonomous Driving 

Aman Khurana 

Chiyu Dong 

Yihuan Zhang 

John M. Dolan

Oct. 31, 2018 

Technologies for Safe and Efficient Transportation (T-SET) UTC 

The Robotics Institute 

Carnegie Mellon University 

Pittsburgh, Pennsylvania 15213 

Contract No. DTRT12GUTG11 



2 

DISCLAIMER	

The contents of this report reflect the views of the authors, who are 
responsible for the facts and the accuracy of the information presented 
herein. This document is disseminated under the sponsorship of the U.S. 
Department of Transportation’s University Transportation Centers 
Program, in the interest of information exchange. The U.S. Government 
assumes no liability for the contents or use thereof. 



3 
 

Table of Contents 
 

Executive Summary ...................................................................................................................................... 4 

1. Introduction ............................................................................................................................................... 4 

1.1 Motivation ........................................................................................................................................... 4 

1.2 Driving at roundabouts ....................................................................................................................... 5 

2. Background and related work ................................................................................................................... 6 

2.1 Behavior planning ............................................................................................................................... 6 

2.2 Partially Observable Markov Decision Process (POMDP) ................................................................ 7 

3. Behavior Planning at Roundabout ............................................................................................................ 9 

3.1 Problem formulation ........................................................................................................................... 9 

3.2 Simulation environment .................................................................................................................... 10 

3.3 Results ............................................................................................................................................... 10 

3.4 Discussion ......................................................................................................................................... 13 

4. Proposed Future work ............................................................................................................................. 13 

5. Lane-Change Social Behavior Generation .............................................................................................. 14 

 

 

  



4 
 

Executive Summary 

The goal of this project was to develop better prediction and behaviors generation 

methods with application to driver assistance and autonomous driving. Prediction of the behavior 

of other cars in traffic allows both driver assistance and autonomous driving systems to better 

plan their immediate future behavior. The resultant behaviors can then be more “socially 

cooperative”, i.e., they can increase the predictability, fluidity, and safety of inter-car 

interactions. This report presents work on two different scenarios: 1) roundabouts or traffic 

circles, in which drivers need to gauge the behaviors of cars in the traffic circle in order to enter 

and exit safely; 2) lane change situations, in which prediction of whether surrounding cars will 

change lanes and if so, what their likely trajectory will be, can improve the smoothness and 

safety of egovehicle motion. 

The report first presents the roundabout/traffic circle work, then appends a conference 

paper published at IROS (IEEE International Conference on Robots and Systems) 2017 

summarizing the lane change prediction work.  

1. Introduction 

1.1 Motivation 

Currently autonomous or self-driving vehicles are at the heart of academia and industry research because 

of its multi-faceted advantages that includes improved safety, reduced congestion, lower emissions and 

greater mobility. Their behavior planning module is in charge of properly maneuvering the autonomous 

vehicle’s own behavior and negotiating with other traffic participants. Toward this end, a lot of work has 

been done for driving on lanes and negotiating intersections, and only a limited focus has been given to 

unsupervised roundabouts or traffic circles which are increasingly becoming popular in most countries as 

means of regulating traffic flow. Roundabouts present a specific challenge in the complexity of driving 



5 
 

behavior, high-variance in road geometry (some have one lane while others may have multiple lanes with 

varying road orientations), and increased uncertainty in perception due to road geometry.  

Maneuvering roundabouts has been a challenge for both the academia and the industry with various 

cases/reports highlighting the need for a better understanding of the problem. [2] [3]. In this work we 

focus on the behavior planning of an autonomous vehicle at an unsupervised roundabout using online, 

anytime POMDP solving techniques. Such scenarios are characterized by the unknown intention of the 

other drivers, their interaction with the ego vehicle and the noisy estimates of the perception system of the 

autonomous vehicle. 

1.2 Driving at roundabouts 

As per a 2015 survey, there are more than 5000 roundabouts in USA alone, with majority of them being 

added over the last decade to better manage traffic within the cities. [1] Most of the roundabouts do not 

have traffic lights; instead, a vehicle approaching the circle/roundabout yields to those already in the 

circle. 

 

 

 

 

 

 

 

Figure 1 America's roundabouts (2015) 
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Driving in roundabouts involves compromise and cooperation between the participating vehicles, 

pedestrians and bicycles. Whereas aggressive and confrontational behavior impedes the traffic movement 

and increases risk of collisions. Therefore, it is crucial that autonomous vehicles exhibit a natural and 

social behavior on roundabouts for the safety and smooth flow of a mixed traffic (where autonomous 

vehicles operate along with human driven vehicles.) 

A typical vehicle behavior in roundabout consists of the following: merge into lane/ yield to traffic inside 

circle/ yield to pedestrian, lane keeping/changing, exiting the roundabout/ yield to traffic exiting the 

roundabout. Unlike human drivers whom have the inborn ability of perceiving the environment and 

extracting essential information to make driving decisions, an autonomous vehicle planning system faces 

increased challenge. 

2. Background and related work 

2.1 Behavior planning 

The commonly adopted approach to planning the motion of an autonomous vehicle is to partition the 

tasks into a hierarchical structure. The planning system is typically decomposed into four components: a 

route is planned through the road network, followed by a behavioral plan that abides by rules of the road, 

motion plan that selects a continuous path and a trajectory control system. In this work we focus on the 

behavior planner that is responsible for selecting an appropriate driving behavior at any point of time 

based on the perceived behavior of other traffic participants, road conditions, and signals from 

infrastructure.  

Katrakazas et al. [4] present a detailed survey to classify recent research on modelling, prediction and 

behavior planning for intelligent vehicles. Discussion on the works that are related to our approach is 

presented below. 
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The work of Enric Galceran et al. [5], involves the design of a closed-loop forward simulation of all 

vehicles with assigned policies using dynamics and observation models and, evaluating interaction in 

unsupervised intersections. The ego vehicle executes a policy from a discrete set of policies which limits 

possible behaviors. 

Hubmann et. al, [6] , present a POMDP framework which is applicable to any number of agents and is 

online, anytime algorithm on continuous state space. They evaluated the use of heuristics to speed up 

computation and present results based on unsupervised intersection. Their use of probabilistic sampling 

(particle filter) guarantees for optimal solution and do not present results for consecutive maneuvers 

which are seen in roundabouts. 

The work of Liu [7] relates to our work in terms of the chosen POMDP solver, DESPOT.   They use road 

context for situation modeling, involving typical vehicles motion patterns and compute approximate 

solution computed online. Although they present their results on a variety of unsupervised scenarios, a 

major limitation of their work is the chosen actions. They only consider acceleration and deceleration of 

the vehicle on the reference path.  

2.2 Partially Observable Markov Decision Process (POMDP) 

Unlike Markov Decision Process (MDP), which assume that the states are fully observable, POMDPs 

assume that the state of a robot or a vehicle is not known. Thus, POMDPs transform the state space into a 

belief space, which contains all the possible probability distributions for every possible state of the system 

that is being modelled. For example, if the intent of other drivers is not known, we can formulate our 

problem as POMDPs using sensor information as observations. Therefore, by formulating this problem as 

a POMDP we can incorporate all the perception uncertainties, road context of roundabouts with an 

arbitrary layout and a variable number of traffic participants with unknown intentions. Also, by planning 

in the belief state, we integrate the prediction and planning problem into a single, combined problem 
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A POMDP is formally a tuple (S, A, Z, T, O, R), where S is a set of states, A is a set of actions, Z is a set 

of observations, T(s, a, s0 ) = p(s 0 |s, a) is the probability of transitioning to state ‘s’ 0 when the agent 

takes action ‘a’ in state ‘s’, O(s, a, z) = p(z|s, a) is the probability of observing ‘z’ if the agent takes action 

‘a’ and ends in state ‘s’, and R(s, a) is the immediate reward for taking action ‘a’ in state ‘s’. 

There are two main approaches to POMDP planning: offline policy computation and online search. In 

offline planning, the agent computes beforehand a policy contingent upon all possible future scenarios 

and executes the computed policy based on the observations received. Although offline planning 

algorithms have achieved dramatic progress in computing near-optimal policies, they are difficult to scale 

up to very large POMDPs, because of the exponential number of future scenarios that must be considered 

and are not applicable to this problem. In contrast, online planning interleaves planning and plan 

execution. The agent searches for a single best action for the current belief only, executes the action, and 

updates the belief. The process then repeats at the new belief 

 

Figure 2 A belief tree of height 2 with 2 sampled scenarios. Every tree nodes represents a belief. 

Every colored dot represents a scenario. Figure from [8]. 
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Recently an online POMDP planning algorithm called AR-DESPOT [8] has successfully scaled up to 

very large POMDPs in anytime. The belief state is represented by the random particles within AR-

DESPOT, and for each particle the obstacle vehicles’ motion intentions are randomly sampled for a belief 

representation. We propose to use this algorithm with our formulation of the problem. 

3. Behavior Planning at Roundabout 

3.1 Problem formulation 

The state of autonomous vehicle and the other vehicles is defined by: 

 

With ‘s, v’ being the position and velocity of the vehicle at the given route ‘r’. The route for other 

vehicles is unknown (partially observable) and that of the ego vehicle is known (fully observable) in the 

formulation. 

The transition model for a discrete time step is as follows: 

 

The observation obtained from other cars is as follows: 

 

The reward is the negative of quadratic sum of collision reward and deviation from target velocity and 

lane change(ideally the ego vehicle should only change lanes in a roundabout to avoid collision) . 
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3.2 Simulation environment 

For evaluation two different scenarios were considered, one consisting of double lane circular road 

(roundabout) to avoid collisions and another for acceleration control and lane change on a straight road. 

Simple environments for these were developed using python and MATLAB. The number of participating 

vehicles and their trajectory is fixed for a given experiment but their initial positions is varied randomly. 

Other vehicles incorporate a simple a distance keeping reactive controller. Some sample images for the 

environment are shown below. 

 

Figure 3. Two lane simulation. The ego-vehicle (red)is shown changing lanes. 

 

Figure 4 Two lane roundabout lane change simulation. The ego-vehicle (red)is shown changing 

lanes. 

3.3 Results  

The proposed behavior planning algorithm was successfully applied for roundabout and lane change 

driving. The extension of the proposed algorithm to handle multiple with random initialization was 

investigated by running 100 continuous runs and recording the mean velocity for each run. As expected 
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the ego vehicle either tries to decelerate when it gets closer to other vehicles or change the lanes. As 

there’s bigger penalty for changing lanes, the vehicle prefers to slow down in most cases. The rewards 

were tuned such that probability of crash is highly minimized and an expected human like behavior is 

obtained.  

 

Figure 5 Mean velocity(mph) in blue and lane change in red in 100 runs with 10 participating cars 

and target velocity of 30 mph 
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Figure 6 Mean velocity(mph) in blue and lane change in red in 100 runs with 5 participating cars 

and target velocity of 30 mph 

 

Figure 7 Mean velocity(mph) in blue and lane change in red in 100 run with 5 participating cars. 

Highly penalty on deviation from target velocity of 30 mph, leading to crash at 45th trial. 



13 
 

3.4 Discussion  

The proposed, real-time approach can guide an autonomous vehicle safely in a roundabout scenario and 

scales well with number of participating vehicles. Although, all POMDP algorithms suffer from the curse 

of dimensionality using heuristics (like considering observations from only a subset of neighboring 

vehicles) one can scale this approach for more dense traffic scenarios. Although, for a given reward 

function, the approach generalizes well for straight lanes and a roundabout or varying traffic density the 

driving behavior is highly dependent on the reward function. A high penalty on deviation for target 

velocity make the driving behavior more aggressive with frequent lane changes and higher mean speed 

but can cause collisions, as seen in Figure 7. 

4. Proposed Future work 

In future, we propose to test for merging into and out of the roundabout by integrating the two scenarios, 

two straight lanes leading to a two-lane roundabout. 

Also, deep neural networks have brought unprecedented success in many domains and provide a distinct 

new approach to decision-making under uncertainty using a model free approach. We plan to investigate 

this problem using a POMDP framework using a deep learning framework such as the one presented in 

[9]. 
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5. Lane-Change Social Behavior Generation 

The second piece of work presented in this report is summarized in the form of a conference paper 

accepted and presented at the IEEE International Conference on Robots and Systems (IROS) in October 

2017. The title of the paper is “Lane-Change Social Behavior Generator for Autonomous Driving Car by 

Non-parametric Regression in Reproducing Kernel Hilbert Space”, and the key results are improved lane-

change behavior prediction in the form of start and end points of the lane-change trajectory via the use of 

a Reproducing Kernel Hilbert Space methodology.  

 



Lane-Change Social Behavior Generator for Autonomous Driving Car
by Non-parametric Regression in Reproducing Kernel Hilbert Space

Chiyu Dong∗, Yihuan Zhang† and John M. Dolan‡

Abstract— Nowadays, self-driving cars are being applied to
more complex urban scenarios including intersections, merging
ramps or lane changes. It is, therefore, important for self-
driving cars to behave socially with human-driven cars. In
this paper, we focus on generating the lane change behavior
for self-driving cars: perform a safe and effective lane change
behavior once a lane-change command is received. Our method
bridges the gap between higher-level behavior commands and
the trajectory planner. There are two challenges in the task:
1) Analyzing the surrounding vehicles’ mutual effects from
their trajectories. 2) Estimating the proper lane change start
point and end point according to the analysis of surrounding
vehicles. We propose a learning-based approach to understand
surrounding traffic and make decisions for a safe lane change.
Our contributions and advantages of the approach are:

1 Considers the behavior generator as a continuous function
in Reproducing Kernel Hilbert Space (RKHS) which
contains a family of behavior generators;

2 Constructs the behavior generator function in RKHS by
non-parametric regressions on training data;

3 Takes past trajectories of all related surrounding cars as
input to capture mutual interactions and output continu-
ous values to represent behaviors.

Experimental results show that the proposed approach is able to
generate feasible and human-like lane-change behavior (repre-
sented by start and end points) in multi-car environments. The
experiments also verified that our suggested kernel outperforms
the ones which were used in a previous method.

I. INTRODUCTION

As the autonomous driving industry grows faster, more
self-driving cars or cars equipped with ADAS start running
in public roads. Google starts testing in Mountain View
urban areas earlier; Uber has been testing self-driving cars
in Pittsburgh urban neighborhoods. GM, Audi, Tesla and
Mercedes have already released ADAS features for their
commercial vehicles. Those cars can perform level 3 au-
tonomy according to NHTSA’s “Levels of automation” [1].
However, the techniques are not mature enough to manage
complex scenarios, such as intersections, ramp-merging and
lane changes, which involve negotiations, intention under-
standing and social behaviors among traffic participants.
These scenarios not only require the autonomous driving
car to have robust perception and control, they also require
that the car shares the road with human-driven cars. This
suggests that the car needs to be able to behave socially

∗Chiyu Dong is with Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213 USA
†Yihuan Zhang is currently a visiting scholar in the Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA 15213 USA. He is a Ph.D
candidate in TongJi University, Shanghai, 200092, China.
‡John M. Dolan is with the Robotics Institute, Carnegie Mellon Univer-

sity, Pittsburgh, PA 15213 USA
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Fig. 1

with others. There are two aspects of social behavior: 1)
Correctly understand human drivers’ intentions or human
driving styles. 2) React properly, similarly to humans.

In this paper, we propose a method to address cooperative
lane change, with a representative scenario shown in Fig.
1. In the proposed method, we integrated these two aspects
into a regression: understanding intentions by a collection of
related traffic participants’ past trajectories; and generating a
proper start point and an end point for lane changing. In our
autonomous driving planning architecture [2], the proposed
predictive lane-change behavior generator works as a module
in the Behavioral Planner. The module bridges the gap
between higher-level commands (i.e., left-lane-change/right-
lane-change) from the mission planner to the trajectory
planner. The outputs provide advisory information, i.e., start
and end points of the lane-change behavior, for the lower-
level planner to generate feasible trajectories. Given the
start and end pose, there are various of ways to determine
trajectories [3]–[5]. The proposed method has the following
three features:

• Uses the dataset to generalize surrounding cars’ effects
on the autonomous car’s lane change behaviors from
dataset.

• Surrounding cars’ and the autonomous car’s past trajec-
tories are applied as input to the method, thus historical
information is also used.

• Formulates the lane change behavior generator as a
function in Reproducing Kernel Hilbert Space, and eval-
uates the start and end points from an input by a non-
parametric regression (RKHS estimator). Therefore, no
fitting model is assumed.

In the following section, previous work on performing
the interactive behaviors, especially for lane changes, is
discussed; Section III-A overviews the 5-surrounding-car
lane change scenario and functions of the behavior generator;
Section III-B briefly introduces Reproducing Kernel Hilbert
Space (RKHS) and formulation of the lane-change behavior
generator in RKHS; Sections III-C and III-D introduce the



regression method and the kernel w.r.t. the RKHS; Section
IV gives experimental results.

II. RELATED WORK

Numerous cooperative planning algorithms for au-
tonomous driving have been proposed. There are three major
categories of methods to address the social cooperation
problem among cars and tackle the lane changing problem:

A Rule-based methods, represented by earlier slot-based
lane-change decision making.

B Optimization-based approaches, which optimize spe-
cific cost functions to guarantee proper behaviors.

C Probabilistic approaches, most of which are using the
Markov Decision Process (MDP) and its extensions.

A. Rule-based methods

The rule-based methods are the most straightforward ap-
proaches. They have been applied on test vehicles since
the 2007 DARPA Urban Challenge. Baker and Dolan [6]
developed CMU Boss’s merge planner using a slot-based
approach. Kinematic information is used to check merge-in
feasibility of each slot, such as the distance to the Goal,
remaining distance in the current lane, etc. Then the target
slot is selected from the set of feasible slots according to
the context of the maneuver, and predictions of others. The
slot-based approach is straightforward to be implemented and
proven robust to simple scenarios. However, the lack of prior
knowledge of surrounding vehicles’ intentions makes it hard
to estimate or predict their movements and corresponding
behaviors. Naranjo et al. [7] perform lane-change decision
making by using fuzzy logic. The method is also straight-
forward and simple to implement. However, it also does not
consider prior knowledge and prediction either.

B. Optimization-based methods

Nilson et al. [8] formulated cooperative planning as an op-
timization problem under a Model Predictive Control (MPC)
framework. The weighted effects of acceleration and braking
are optimized subject to the trajectory’s shape and feasibility.
The author provided a straightforward way to transform
the problem into a well-defined optimization problem that
can be solved by applying a specific solver. However, the
manual tuning of weights is difficult. Also, the equation to
be optimized and objective functions are also designed by
hand, without the use of data.

C. Probabilistic methods

Probabilistic methods form the largest percentage of solu-
tions to lane changing or cooperative driving. Montemerlo
et al. [9] integrated lane-changing behavior into Stanford
Junior’s global path planner, which is an instance of dynamic
programming (DP). In fact, the problem is formulated as
optimizing a variant Bellman equation, which implicitly
follows the MDP framework and value iteration. Each action
is assigned a penalty cost for penalty. The lane changing
behavior is a penalty term in the cumulative cost function
which is optimized by the DP. However, the algorithm does

not consider other traffic participants. Yao et al. [10] search
for k-nearest-neighbors in a lane-change scenario database
to generate a trajectory. Measuring differences between
trajectories and scenarios remains a problem. And if the
dataset contains a large number of samples, searching for
the k-nearest-neighbors is time-consuming. Galceran and
Cunningham et al. [11], [12] make the decision depending on
the probability of past trajectories of all traffic participants.
Both of them report discrete actions such as left-lane-change
right-lane-change etc., which can be used as an upper-level
module in our method. Dong et al. [13], [14] detect whether
the other car will merge in by using PGM. However, this
method only provides binary output of either Yield or Not
Yield.

Ulbrich et al. [15] and Wei et al. [16] proposed an online
POMDP for lane-change using real-time belief space search
[17] . However, to achieve real-time performance and use a
simple POMDP framework, they discretized state and action
spaces. To avoid discrete states, Bai et al. [18] proposed a
continuous-state POMDP using a belief tree and the model
was applied to navigating intersections. However its actions
are discrete and represented by a generalized policy graph
(GPG). Seiler et al. [19] proposed an online and approximate
solver for a continuous action POMDP, but only tested
in toy problems. The POMDP solutions above still need
manually designed probabilistic transition models and reward
functions. Sadigh et al. and Hadfield et al. [20], [21] establish
those transition models by (inverse) reinforcement learning,
but their solutions are limited to the specific scenario, such
as the numbers of traffic participants.

III. METHOD

A. The lane change scenario.

In our proposed method, the behavior generator is for-
mulated as a function of the related surrounding cars. As
shown in Fig. 1, the trajectories of all related surrounding
cars and the autonomous car are taken as input. The related
surrounding cars of the autonomous car include the leading
car and the following car in the current lane, and the
immediate neighboring car next to the autonomous car in the
target lane and its leading and following cars. The output of
the method is the suggested lane-change behavior, which is
represented by the lane-change start point and the end point.
Ideally, the start point of the lane-change behavior is defined
as the position where the autonomous car’s heading depart
from the orientation of the current lane; the end point is the
position where the autonomous car’s heading converges to
the orientation of the target lane.

B. Formulate the behavior generator in RKHS.

The reproducing Kernel Hilbert Space (RKHS) repre-
sentation for planning is introduced by Marinho et al.
[22]. In this work, a trajectory is explicitly described by
Gaussian radial basis functions, using a functional gradient
to optimize a cost functional to avoid static obstacles or
navigate a high-dimensional arm. However, they did not
explore the opportunity to apply similar methods to dynamic



environments and cooperative scenarios. We follow their
formulation, but instead of using functional gradient to find
the optimal solution, our proposed method relies on RKHS
non-parametric regression and a prior dataset to estimate
continuous values i.e., the start/end points.

Reproducing Kernel Hilbert Space H contains families of
smooth functions which are defined by a Mercer Kernel. The
Mercer Kernel is a continuous mapping K : X × X →
IR, i.e., K(x, y) =< f, g >H , where f := Kx, g :=
Ky, f, g ∈ H. A function f in H can be represented
by a linear combination of the kernel: f(·) =

∑
αiKxi(·),

and this kernel has the reproducing property: f(x) =<
f,Kx >, which is essential to RKHS. With the help of
the kernel, it is possible to evaluate the function without
explicit definition of the function (or basis functions) in the
high-dimensional functional space [23]. A behavior generator
is a function F : X → B, which maps a vector of
trajectories (X ∈ X ) to a behavior (b ∈ B). X is a
coordinate space which contains vectors of N surrounding
vehicles’ past trajectories X

def
= {xi}N1 , xi ∈ IRT. T

is the length of the relevant historical poses. The input
contributes to all elements in the output vector. Using Γ =
{X}Ni as the training set and Xi as a training sample, then
F(Γ) = {[f1(X1), ..., fD(X1)], ..., [f1(XN ), ..., fD(XN )]}.
The output range B ⊆ IRD represents the behavior. In the
lane-changing problem, we are interested in two points: the
start and the end points of the lane-changing behavior. Thus
D = 2 in the current setup. Since the dimension of the range
(the output domain) is D > 1, this function is a vector-valued
function. The kernel which is mentioned in the paragraph
above is no longer a scalar-valued function but a matrix-
valued one, i.e., X × X → IRD×D,

K(X,U) =


k(X,U)1,1 · · · k(X,U)1,D
k(X,U)2,1 · · · k(X,U)2,D

... · · ·
...

k(X,U)D,1 · · · k(X,U)D,D

 (1)

Parallel to the scalar-valued kernel, the matrix-valued kernel
has the reproducing property which is also given by the
Representer Theorem [24], [25] :

F (X) =

N∑
i=1

K(Xi, X) ·αj , αj ∈ IRD (2)

The · operator is the normal inner product in Euclidean
Space, and α is a ND-dimensional coefficient. By constrain-
ing the behavior function F into the RKHS, we assume
that F is continuous and can be represented by a linear
combination of a set of basis functions. The functions are
unknown to us, and we are not interested in the exact form
of the behavior generator function; instead, we are interested
in its evaluation given trajectories. In order to approximate
the evaluation, and since we do not explicitly know the form
of the function, we use non-parametric regression from the
data in the RKHS, which is defined by the kernel above.

C. Non-parametric regression for the end points in RKHS

As the kernel representation of the behavior generator
function was defined in the paragraph above, the function
should be estimated from data and properly evaluated at
given input. Note that we do not explicit define the form of
the function; instead, we use linear combination of kernels,
as mentioned in Equation 2. Once the kernel is decided
(often given by users or separately learned from data), the
only parameter left to be optimized is the coefficient α.
Thus the approximation results in minimizing the regularized
empirical error:

f̂ = argmin
f∈H

N∑
i=1

(bi − f(Xi))
2 + λJ(f) (3)

where (Xi, bi) is training input and behavior output, J(f) is
the penalty term. Here ||f ||H is used as the penalty term (or
the regulation term). And the coefficient has a closed-form
solution [24], [25]:

α = (K(X,X) + λNI)−1b (4)

Substituting the evaluation from Equation 4 into Equation 2
yields the estimated behavior generator function f̂ . Given a
new input X ′, the estimated behavior b̂ becomes:

b̂ = K∗(K + λI)−1b (5)

Where b
def
= {bi}N1 is the collection of the training behaviors.

K∗ is the new kernel result given incoming input, a D×ND
matrix. The regularization factor λ leverages the smoothness
and accuracy of the regression function. Note that the (K +
λI)−1b part can be pre-calculated offline given the training
samples. Once an input comes in, only the K∗ will be re-
evaluated, and matrix multiplication is preformed with the
pre-calculated (K + λI)−1b.

D. Kernels

The essential part of the method is the kernel. As men-
tioned above, the input and data are matrices, i.e., in
K(X1, X2), X1, X2 are TN -dimensional matrices, where
T is the period of time, and N is the number of surround-
ing vehicles (including the autonomous car itself). In this
problem setup, there are six vehicles which need to be taken
into consideration: five surrounding cars and the autonomous
driving car. Then the problem is to use a proper kernel to
calculate the inner product in RKHS. We use the inverse
multiquadric kernel [23], [26]:

K(X1, X2) =
1√

||X1 −X2||2 + c
where c > 0 (6)

Since the input X1, X2 ∈ X are matrices, the norm should
measure the distance between two matrices. The kernel can
be constructed using the Hilbert-Schmit norm, (a.k.a. the
Frobenius norm) or the Spectral norm [27]:

||A||F =
√
tr(AT ·A) (7)

where tr(·) is the trace function, A = X1 −X2.



||A||S = ||A||2 =
√
λmax(AT ·A) (8)

Both the Frobenius norm and the Spectral norm consider the
singular values of two matrices’ difference. Since in Equation
7, √

tr(AT ·A) =
√∑

σ2
i (9)

σi is the i-th singular value of the matrix A, and in Equation
8, √

λmax(AT ·A) = max
i
σi (10)

The singular values measure the major differences between
two matrices which contain two trajectories.

IV. EXPERIMENTAL RESULTS

In the experiments, real data are used in training and
testing. Lane-change scenarios with all participants, as in Fig.
1, are grouped and extracted from the dataset. Each group
contains one host car (Veh-s) and surrounding cars, i.e., Veh-
f, Veh-r, Veh-rt, Veh-ft, Veh-st in Fig. 1. The trajectory of
every car in the group is recorded from 10 seconds before
to 10 seconds after the host car (Veh-s) crosses the lane-
marking. Segments of trajectories from all participants before
the host car starts turning towards the target lane are taken as
input X . For training, the real start and end points’ positions
are considered known values b to obtain the parameter α
in Equation 4. Knowing the coefficient parameter α, in
testing, a new kernel response K∗ is calculated by using
new input and segments in the training set, to finally obtain
the estimation b̂. Results of the testing are the start and
end points of the lane-change behavior. These points are
compared with ground-truth, which is extracted from the
same dataset. The program runs in real-time with an Intel
Core i7 level processor in single thread on a standard laptop.
The training process takes only a few seconds; the average
update time for evaluating a new input is 0.09s.

A. Data Description

The public dataset of individual vehicle trajectories we use
in this paper is from NGSIM [28], a program funded by the
U.S. Federal Highway Administration. These trajectory data
are so far unique in the history of traffic research and provide
a great and valuable basis for the validation and calibration
of microscopic traffic models. We test our method on the
datasets from the I80 and the US101 highways.

The I80 dataset consists of three 15-minute periods: 4:00
p.m. to 4:15 p.m., 5:00 p.m. to 5:15 p.m., and 5:15 p.m. to
5:30 p.m. These periods represent the buildup of congestion,
or the transition between uncongested and congested con-
ditions, and full congestion during the peak period [28]. A
total of 45 minutes of data are available in the US101 dataset,
which are segmented into three 15-minute periods: 7:50 a.m.
to 8:05 a.m., 8:05 a.m. to 8:20 a.m., and 8:20 a.m. to 8:35
a.m. [28]. In both the I80 and the US101 datasets, vehicle
trajectory data provide precise location of each vehicle within
the study area every one-tenth of a second.

TABLE I: NGSIM data features.

Feature Definition

Vehicle Speed (m/s) Speed of vehicles in current lane and
target lane

Longitudinal Position (m) Longitudinal Position of vehicles in
current lane and target lane

Lateral Position (m) Lateral Position of vehicles in current
lane and target lane

Vehicle Length (m) Length of vehicle

Algorithm 1 Lane change extraction in NGSIM:
Input: Original dataset of NGSIM Sori, lateral offset thresh-

old dref , heading orientation threshold θref , match
points threshold Dref

Output: Lane change trajectories along with surrounding
vehicles’ trajectories, start and end points

Format the original dataset into id-indexed dataset Sid and
time-indexed dataset St;

for all id in Sid, do
Find periods Tlc in which lateral offset is larger than
dref ;

Find surrounding vehicles’ states in periods Tlc;
for all trajectories of subject vehicle in Tlc, do

Calculate heading orientation θlc and mark the points
where θlc = θref ;
Choose the closest two points as primary start and
end points Ps, Pe;
Use curve fitting method to fit the lane change
trajectory and find two intersection points Qs, Qe;
if Distance(Ps,Qs) ≤Dref & Distance(Pe,Qe)
≤Dref then

Mark Ps, Pe and store trajectories according to
time frames. m

end
end

end

B. Lane change extraction and start/end points determine
for ground-truth.

Based on the trajectory data, the lane change trajectories
along with surrounding vehicles’ trajectories are extracted
for the purpose of lane change social behavior studying1.
Table I shows a summary of data features used in our paper.
Note that speed, longitudinal position, lateral position, length
and width are attributes for subject and surrounding vehicles.
Extraction details are presented in Algorithm 1. Suggested
value for dref is half of the lane width (1.875m), Dref is
equal to the lane width (3.75m). As shown in Fig. 2, blue
dots represent the lane change trajectory, start and end points
are presented in green and red dots. The car traverses from
the left-hand-side to the right-hand-side of the frame. The
first two figures show example of left lane changes; the last
two figures are examples of right lane changes.

1https://github.com/donnydcy/LC NGSIM
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Fig. 2: Examples of lane change trajectories (blue dots) which are extracted from the dataset. The start and end points are labelled green
and red, respectively. The car moves from left to right in each plot. The first two figures are examples for left-lane-change scenarios, and
the last two are for right-lane-change scenarios.
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Fig. 3: Examples and results of the estimation. Vertical axis is time (s). Black curves are host vehicles’ trajectories; colored curves are
surrounding cars’; the black curves on the T ime = 0 plane are the projected paths of the host vehicles; Dashed straight lines are lane
dividers; Red diamonds are predicted start/end points. Highlighted segments on the curves are used to predict the start/end points.

C. Results compared with the ground-truth

We extracted 543 lane changing scenarios from the US-
101 and I-80 data. As Fig. 1 shows, at most five surrounding
cars and six trajectories are considered: five from surrounding
cars and one from the host car itself.

450 groups of trajectories are randomly selected as training
sets, and the remaining 93 groups are used for testing. To
concentrate on the recent past, training trajectories are pruned
and only retain the last 30 steps (3 seconds) before the host
vehicle starts the lane-change (when the heading departs
from the orientation of the current lane.).

Four kernels are tested: Laplacian RBFs, Gaussian RBFs
which are suggested in [22] or inverse multiquadric kernels
(IMK) constructed by with the Frobenius norm ||·||F and the
Spectral norm || · ||S . Results are shown in Table II. µstart

is the difference in the start point between the estimate and
the ground-truth, and σstart is the standard deviation. µend

is the difference in end point between the estimate and the
ground-truth, and σend is the standard deviation.

Table II shows that the RBFs have large errors. However,

TABLE II: Statistical results for different kernels compared with
ground-truth, All units are meters (m).

kernels µstart µend σstart σend

Laplacian RBF[22] -54.90 -116.61 24.10 43.40
Gaussian RBF[22] -13.55 -31.15 16.20 25.42
IMK with || · ||F -0.95 -18.50 6.38 13.77
IMK with || · ||S 1.78 -17.90 5.87 13.10

as the analyzed in section III-D, the Frobenius norm and
Spectral norm, work similarly, both significantly outperform
the other kernels. In terms of standard deviation, the per-
formance of the Spectral norm is slightly better than that
of the Frobenius norm. In the second row, the widely used
Gaussian RBF kernel, which is also used in [22], performs
worse than the inverse multiquadric kernels with Frobenius
norm and Spectral norm.

Fig. 3 shows the start/end point predictions of six scenarios
from the testing group. Highlighted segments are used for
prediction, and are the only input of the proposed method.



The segments consist of all traffic participants’ trajectories
in a 3-second time window. (Takes left-lane-change as an
example, all traffic participants in a lane changing scenario
are defined in Fig. 1.) The red diamonds are the output
of the method, which indicate the start points and the end
points of the lane-change behavior. The real lane-change
paths generated by human drivers are shown as the black
curves on the Time = 0 plane. The red diamonds (the
outputs) are close to the turn points of the black curves,
which indicates that the predicted start/end points correspond
to feasible lane-change behaviors.

V. CONCLUSIONS

In this paper, we proposed a novel social behavioral
method for autonomous driving vehicle to estimate the lane
change start point and the end point. The behavior generator
is formulated as a function in Reproducing Kernel Hilbert
Space, which is obtained by a non-parametric regression
with kernels. We also suggest using the inverse multiquadric
kernels that are constructed by the Frobenius norm or
Spectral norm. In the training process, a linear operator is
obtained, which is formed by collection of training data and
their kernel values. After finding this operator, given a new
input, the behavior generator function can be evaluated by
multiplying the linear operator by the kernel response of the
input. Experimental results show that the proposed method
with the suggested kernels can estimate the start/end points
of lane changing accurately, with limited mean error and
standard deviation that outperform other kernels.

In the future, instead of estimating start/end points, the
method will be further developed to generate a trajectory, as
is done in [22];

ACKNOWLEDGMENT

Thanks to Dr. Tianyu Gu, Dr. Yuqing Tang and Sasanka
Nagavalli for discussions on path planning and POMDP.

REFERENCES

[1] N. H. T. S. Administration et al., “Preliminary statement of policy
concerning automated vehicles,” Washington, DC, pp. 1–14, 2013.

[2] J. Wei, J. M. Dolan, and B. Litkouhi, “Autonomous vehicle social
behavior for highway entrance ramp management,” in Intelligent
Vehicles Symposium (IV), 2013 IEEE. IEEE, 2013, pp. 201–207.

[3] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 2061–2067.

[4] T. Gu, J. Atwood, C. Dong, J. M. Dolan, and J.-W. Lee, “Tunable and
stable real-time trajectory planning for urban autonomous driving,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 250–256.

[5] W. Luo, N. Chakraborty, and K. Sycara, “Distributed dynamic priority
assignment and motion planning for multiple mobile robots with
kinodynamic constraints,” in American Control Conference (ACC),
2016. IEEE, 2016, pp. 148–154.

[6] C. R. Baker and J. M. Dolan, “Traffic interaction in the urban
challenge: Putting boss on its best behavior,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. IEEE, 2008, pp. 1752–1758.

[7] J. E. Naranjo, C. Gonzalez, R. Garcia, and T. De Pedro, “Lane-change
fuzzy control in autonomous vehicles for the overtaking maneuver,”
IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 3,
pp. 438–450, 2008.
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